Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Article in English | MEDLINE | ID: mdl-38688300

ABSTRACT

Low-/negative-pressure hydrocephalus (LPH/NePH) is uncommon in clinical practice, and doctors are unfamiliar with it. LPH/NePH is frequently caused by other central nervous system diseases, and patients are frequently misdiagnosed with other types of hydrocephalus, resulting in delayed treatment. LPH/NePH therapy evolved to therapeutic measures based on "external ventricular drainage below atmospheric pressure" as the number of patients with LPH/NePH described in the literature has increased. However, the mechanism of LPH/NePH formation is unknown. Thus, understanding the process of LPH/NePH development is the most important step in improving diagnosis and treatment capability. Based on case reports of LPH/NePH, we reviewed theories of transcortical pressure difference, excessive cerebral venous drainage, brain viscoelastic changes, and porous elastic sponges.

2.
Cancer Lett ; 591: 216895, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38670305

ABSTRACT

Protein homeostasis is fundamental to the development of tumors. Ribosome-associated quality-control (RQC) is able to add alanine and threonine to the stagnant polypeptide chain C-terminal (CAT-tail) when protein translation is hindered, while Ankyrin repeat and zinc-finger domain-containing-protein 1 (ANKZF1) can counteract the formation of the CAT-tail, preventing the aggregation of polypeptide chains. In particular, ANKZF1 plays an important role in maintaining mitochondrial protein homeostasis by mitochondrial RQC (mitoRQC) after translation stagnation of precursor proteins targeting mitochondria. However, the role of ANKZF1 in glioblastoma is unclear. Therefore, the current study was aimed to investigate the effects of ANKZF1 in glioblastoma cells and a nude mouse glioblastoma xenograft model. Here, we reported that knockdown of ANKZF1 in glioblastoma cells resulted in the accumulation of CAT-tail in mitochondria, leading to the activated mitochondrial unfolded protein response (UPRmt) and inhibits glioblastoma malignant progression. Excessive CAT-tail sequestered mitochondrial chaperones HSP60, mtHSP70 and proteases LONP1 as well as mitochondrial respiratory chain subunits ND1, Cytb, mtCO2 and ATP6, leading to mitochondrial oxidative phosphorylation dysfunction, membrane potential impairment, and mitochondrial apoptotic pathway activation. Our study highlights ANKZF1 as a valuable target for glioblastoma intervention and provides an innovative insight for the treatment of glioblastoma through the regulating of mitochondrial protein homeostasis.

3.
Lancet Infect Dis ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38513684

ABSTRACT

BACKGROUND: A human hookworm vaccine is being developed to protect children against iron deficiency and anaemia associated with chronic infection with hookworms. Necator americanus aspartic protease-1 (Na-APR-1) and N americanus glutathione S-transferase-1 (Na-GST-1) are components of the blood digestion pathway critical to hookworm survival in the host. Recombinant Na-GST-1 and catalytically inactive Na-APR-1 (Na-APR-1[M74]) adsorbed to Alhydrogel were safe and immunogenic when delivered separately or co-administered to adults in phase 1 trials in non-endemic and endemic areas. We aimed to investigate the safety and immunogenicity of these antigens in healthy children in a hookworm-endemic area. METHODS: This was a randomised, controlled, observer-blind, phase 1, dose-escalation trial, conducted in a clinical research centre, in 60 children aged six to ten years in Lambaréné, a hookworm-endemic region of Gabon. Healthy children (determined by clinical examination and safety laboratory testing) were randomised 4:1 to receive co-administered Na-GST-1 on Alhydrogel plus Na-APR-1(M74) on Alhydrogel and glucopyranosyl lipid A in aqueous formulation (GLA-AF), or co-administered ENGERIX-B hepatitis B vaccine (HBV) and saline placebo, injected into the deltoid of each arm. Allocation to vaccine groups was observer-masked. In each vaccine group, children were randomised 1:1 to receive intramuscular injections into each deltoid on two vaccine schedules, one at months 0, 2, and 4 or at months 0, 2, and 6. 10 µg, 30 µg, and 100 µg of each antigen were administered in the first, second, and third cohorts, respectively. The intention-to-treat population was used for safety analyses; while for immunogenicity analyses, the per-protocol population was used (children who received all scheduled vaccinations). The primary outcome was to evaluate the vaccines' safety and reactogenicity in healthy children aged between six and ten years. The secondary outcome was to measure antigen-specific serum IgG antibody levels at pre-vaccination and post-vaccination timepoints by qualified ELISAs. The trial is registered with ClinicalTrials.gov, NCT02839161, and is completed. FINDINGS: Between Jan 23 and Oct 3, 2017, 137 children were screened, of whom 76 were eligible for this trial. 60 children were recruited, and allocated to either 10 µg of the co-administered antigens (n=8 for each injection schedule), 30 µg (n=8 for each schedule), 100 µg (n=8 for each schedule), or HBV and placebo (n=6 for each schedule) in three sequential cohorts. Co-administration of the vaccines was well tolerated; the most frequent solicited adverse events were mild-to-moderate injection-site pain, observed in up to 12 (75%) of 16 participants per vaccine group, and mild headache (12 [25%] of 48) and fever (11 [23%] of 48). No vaccine-related serious adverse events were observed. Significant anti-Na-APR-1(M74) and anti-Na-GST-1 IgG levels were induced in a dose-dependent manner, with peaks seen 14 days after the third vaccinations, regardless of dose (for Na-APR-1[M74], geometric mean levels [GML]=2295·97 arbitrary units [AU] and 726·89 AU, while for Na-GST-1, GMLs=331·2 AU and 21·4 AU for the month 0, 2, and 6 and month 0, 2, and 4 schedules, respectively). The month 0, 2, and 6 schedule induced significantly higher IgG responses to both antigens (p=0·01 and p=0·04 for Na-APR-1[M74] and Na-GST-1, respectively). INTERPRETATION: Co-administration of recombinant Na-APR-1(M74) and Na-GST-1 to school-aged Gabonese children was well tolerated and induced significant IgG responses. These results justify further evaluation of this antigen combination in proof-of-concept controlled-infection and efficacy studies in hookworm-endemic areas. FUNDING: European Union Seventh Framework Programme.

4.
Brain Behav ; 14(3): e3465, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38468469

ABSTRACT

BACKGROUND: SP gene family, consisting of SP100, SP110, SP140, and SP140L, has been implicated in the initiation and advancement of numerous malignancies. Nevertheless, their clinical significance in glioma remains incompletely understood. METHOD: Expression levels and prognostic significance of SP family members were evaluated in the TCGA and CGGA datasets. Multifactorial analysis was used to identify SP gene family members that can independently impact the prognosis of glioma patients. A SP140-based predictive risk model/nomogram was developed in TCGA dataset and validated in CGGA dataset. The model's performance was evaluated through receiver operating characteristic (ROC) curves, calibration plots, and decision curve analyses. Phenotypic associations of SP140 and TRIM22 were examined through CancerSEA and TIMER. The effect of SP140 inhibitor in glioma progress and TRIM22/PI3K/AKT signaling pathway was confirmed in U251/U87 glioma cells. RESULTS: The SP family members exhibited elevated expression in gliomas and were negatively correlated with prognosis. SP140 emerged as an independent prognostic factor, and a SP140-based nomogram/predictive risk model demonstrated high accuracy. SP140 inhibitor, GSK761, lead to the suppression of TRIM22 expression and the PI3K/AKT signaling pathway. GSK761 also restrain glioma proliferation, migration, and invasion. Furthermore, SP140 and TRIM22 coexpressed in glioma cells with high level of vascular proliferation, TRIM22 is closely associated with the immune cell infiltration. CONCLUSION: SP140-based nomogram proved to be a practical tool for predicting the survival of glioma patients. SP140 inhibitor could suppress glioma progress via TRIM22/PI3K/AKT signaling pathway.


Subject(s)
Glioma , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Proliferation , Signal Transduction , Glioma/drug therapy , Glioma/genetics , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/pharmacology , Repressor Proteins/metabolism , Minor Histocompatibility Antigens/pharmacology , Transcription Factors , Antigens, Nuclear/metabolism , Antigens, Nuclear/pharmacology
5.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 134-142, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38372105

ABSTRACT

This study aimed to identify and validate a 9-gene signature for predicting overall survival (OS) in glioma patients. Analysis of multiple gene expression datasets led to the identification of 135 candidate genes associated with OS in glioma patients. Further analysis revealed that IGFBP2, PBK, NRXN3, TGIF1, DNAJA4, and LGALS3BP were identified as risk factors for OS, while ENAH, PPP2R2C, and SPHKAP were found to be protective factors. Multifaceted validation using different databases confirmed their differential expression patterns in glioma tissues compared to normal brain tissue. By utilizing LASSO regression and multivariate Cox regression analysis, a risk score was developed based on the expression levels of the 9 crucial genes. The risk score showed a significant correlation with OS in both training and validation cohorts and yielded superior predictive accuracy compared to individual gene expression. Moreover, a predictive nomogram incorporating the risk score, WHO grade, age, IDH mutation, and 1p/19q co-deletion was constructed and validated, which exhibited high predictive capabilities for survival rates at different time points. Enrichment analysis revealed the involvement of extracellular matrix-related pathways and immune system signaling in glioma prognosis. Furthermore, the risk score showed a strong correlation with immune cell infiltration and immune checkpoint expression, suggesting its potential role in the tumor immune microenvironment. In conclusion, our study provides a robust 9-gene signature and a predictive nomogram for evaluating the prognosis of glioma patients, offering valuable insights into personalized treatment strategies.


Subject(s)
Brain , Glioma , Humans , Chromosome Aberrations , Databases, Factual , Extracellular Matrix , Glioma/diagnosis , Glioma/genetics , Tumor Microenvironment , Repressor Proteins , Homeodomain Proteins
6.
Free Radic Biol Med ; 213: 394-408, 2024 03.
Article in English | MEDLINE | ID: mdl-38281626

ABSTRACT

BACKGROUND: The mitochondrial unfolded protein response (UPRmt) is a vital biological process that regulates mitochondrial protein homeostasis and enables glioblastoma cells to cope with mitochondrial oxidative stress in the tumor microenvironment. We previously reported that the binding of mitochondrial stress-70 protein (mtHSP70) to GrpE protein homolog 1 (GrpEL1) is involved in the regulation of the UPRmt. However, the mechanisms regulating their binding remain unclear. Herein, we examined the UPRmt in glioblastoma and explored whether modulating the interaction between mtHSP70 and GrpEL1 affects the UPRmt. METHODS: Western blot analysis, aggresome staining, and transmission electron microscopy were used to detect the activation of the UPRmt and protein aggregates within mitochondria. Molecular dynamics simulations were performed to investigate the impact of different mutations in mtHSP70 on its binding to GrpEL1. Endogenous site-specific mutations were introduced into mtHSP70 in glioblastoma cells using CRISPR/Cas9. In vitro and in vivo experiments were conducted to assess mitochondrial function and glioblastoma progression. RESULTS: The UPRmt was activated in glioblastoma cells in response to oxidative stress. mtHSP70 regulated mitochondrial protein homeostasis by facilitating UPRmt-progress protein import into the mitochondria. Acetylation of mtHSP70 at Lys595/653 enhanced its binding to GrpEL1. Missense mutations at Lys595/653 increased mitochondrial protein aggregates and inhibited glioblastoma progression in vitro and in vivo. CONCLUSIONS: We identified an innovative mechanism in glioblastoma progression by which acetylation of mtHSP70 at Lys595/653 influences its interaction with GrpEL1 to regulate the UPRmt. Mutations at Lys595/653 in mtHSP70 could potentially serve as therapeutic targets and prognostic indicators of glioblastoma.


Subject(s)
Glioblastoma , HSP70 Heat-Shock Proteins , Humans , HSP70 Heat-Shock Proteins/metabolism , Acetylation , Glioblastoma/genetics , Glioblastoma/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Tumor Microenvironment
7.
Am J Transl Res ; 15(8): 5085-5098, 2023.
Article in English | MEDLINE | ID: mdl-37692937

ABSTRACT

PURPOSE: To investigate the mechanism of action underlying the effective treatment of New Coronavirus Pneumonia Agreement Prescription (NCPAP) on 2019 Novel Coronavirus-Infected Pneumonia (2019-NCIP) using network pharmacology. METHODS: In this retrospective study, 50 patients with 2019-NCIP were recruited, including 16 who received symptomatic treatment and 34 that received NCPAP formula treatment on the basis of symptomatic treatment. Hospitalization and lymphocyte percentages were served as efficacy evaluation indicators. Moreover, pharmacological analysis was performed to identify the target disease of NCPAP. Active ingredients in herbs were screened using the Traditional Chinese Medications Systems Pharmacology (TCMSP) database, and related target genes were identified. We then queried therapeutic target data for coronavirus-associated genes. The protein-protein interaction network was constructed to examine the relationships between these targets. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) network enrichment analyses were conducted using the Database for Annotation, Visualization and Integrated Discovery (DAVID) database. RESULTS: NCPAP significantly reduced hospitalization time and increased both the absolute value and percentage of lymphocytes. Bioinformatics and cytokine analysis suggested that preventing cytokine storm syndrome and regulating immune response are the key mechanisms of NCPAP in treating 2019-NCIP. CONCLUSIONS: The possible mechanisms of NCPAP in the treatment of 2019-NCIP are reduction of cytokine storms and regulation of the immune response.

8.
Materials (Basel) ; 16(16)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37629949

ABSTRACT

Basalt fiber (BF) is deemed a new environmentally friendly and high-performance fiber material due to its high strength, electrical insulation, corrosion resistance and high temperature resistance. Yet, the surface inertness restricts its practical application. In this work, the BF was irradiated and activated by electron beam, followed by in situ growth of SiO2 using a hydrothermal method, then composites with polypropylene (PP) were prepared by microinjection molding. According to the results of scanning electron microscopy (SEM) and Fourier transform infrared (FTIR), more active sites can be formed after irradiation, thus more SiO2 nanoparticles were generated on the surface of BF. Consequently, the rough surface of modified BF could provide stronger shear force during melt processing and resulted in a higher orientation of the molecular chains, increasing the lamellar thickness and generating more highly ordered ß crystals in the composites. I400BF-gSiO2 exhibited the highest content of ß crystals with the crystallinity of 53.62% and orientation of ß (300) crystal plane of 0.91, which were 8.66% and 0.04 higher than those of the composite with pristine BF. Furthermore, due to the perfection of crystals, increased interfaces and interfacial interlocking between PP molecules and modified BF, I400BF-gSiO2 showed good overall performance, with storage modulus of 8000 MPa at -100 °C, glass transition temperature of 23.03 °C and tensile strength of 62.2 MPa, which was 1900 MPa, 1.23 °C and 29.6 MPa higher than neat PP. Hence, the surface roughing strategy proposed in this work is expected to provide some insight and promote the application of BF reinforced thermoplastic composites.

9.
PLoS Negl Trop Dis ; 17(3): e0011236, 2023 03.
Article in English | MEDLINE | ID: mdl-36996185

ABSTRACT

BACKGROUND: Recombinant Schistosoma mansoni Tetraspanin-2 formulated on Alhydrogel (Sm-TSP-2/Alhydrogel) is being developed to prevent intestinal and hepatic disease caused by S. mansoni. The tegumentary Sm-TSP-2 antigen was selected based on its unique recognition by cytophilic antibodies in putatively immune individuals living in areas of ongoing S. mansoni transmission in Brazil, and preclinical studies in which vaccination with Sm-TSP-2 protected mice following infection challenge. METHODS: A randomized, observer-blind, controlled, Phase 1b clinical trial was conducted in 60 healthy adults living in a region of Brazil with ongoing S. mansoni transmission. In each cohort of 20 participants, 16 were randomized to receive one of two formulations of Sm-TSP-2 vaccine (adjuvanted with Alhydrogel only, or with Alhydrogel plus the Toll-like receptor-4 agonist, AP 10-701), and 4 to receive Euvax B hepatitis B vaccine. Successively higher doses of antigen (10 µg, 30 µg, and 100 µg) were administered in a dose-escalation fashion, with progression to the next dose cohort being dependent upon evaluation of 7-day safety data after all participants in the preceding cohort had received their first dose of vaccine. Each participant received 3 intramuscular injections of study product at intervals of 2 months and was followed for 12 months after the third vaccination. IgG and IgG subclass antibody responses to Sm-TSP-2 were measured by qualified indirect ELISAs at pre- and post-vaccination time points through the final study visit. RESULTS: Sm-TSP-2/Alhydrogel administered with or without AP 10-701 was well-tolerated in this population. The most common solicited adverse events were mild injection site tenderness and pain, and mild headache. No vaccine-related serious adverse events or adverse events of special interest were observed. Groups administered Sm-TSP-2/Alhydrogel with AP 10-701 had higher post-vaccination levels of antigen-specific IgG antibody. A significant dose-response relationship was seen in those administered Sm-TSP-2/Alhydrogel with AP 10-701. Peak anti-Sm-TSP-2 IgG levels were observed approximately 2 weeks following the third dose, regardless of Sm-TSP-2 formulation. IgG levels fell to low levels by Day 478 in all groups except the 100 µg with AP 10-701 group, in which 57% of subjects (4 of 7) still had IgG levels that were ≥4-fold higher than baseline. IgG subclass levels mirrored those of total IgG, with IgG1 being the predominant subclass response. CONCLUSIONS: Vaccination of adults with Sm-TSP-2/Alhydrogel in an area of ongoing S. mansoni transmission was safe, minimally reactogenic, and elicited significant IgG and IgG subclass responses against the vaccine antigen. These promising results have led to initiation of a Phase 2 clinical trial of this vaccine in an endemic region of Uganda. TRIAL REGISTRATION: NCT03110757.


Subject(s)
Schistosomiasis mansoni , Animals , Humans , Mice , Adjuvants, Immunologic , Aluminum Hydroxide , Brazil , Immunoglobulin G , Schistosoma mansoni , Protozoan Vaccines
10.
Immunology ; 168(4): 684-696, 2023 04.
Article in English | MEDLINE | ID: mdl-36349514

ABSTRACT

Severe cases of COVID-19 present hyperinflammatory condition that can be fatal. Little is known about the role of regulatory responses in SARS-CoV-2 infection. In this study, we evaluated the phenotype of regulatory T cells in the blood (peripheral blood mononuclear cell) and the lungs (broncho-alveolar) of adult patients with severe COVID-19 under invasive mechanical ventilation. Our results show important dynamic variation on Treg cells phenotype during COVID-19 with changes in number and functional parameters from the day of intubation (Day 1 of intensive care unit admission) to Day 7. We observed that compared with surviving patients, non-survivors presented lower numbers of Treg cells in the blood. In addition, lung Tregs of non-survivors also displayed higher PD1 and lower FOXP3 expressions suggesting dysfunctional phenotype. Further signs of Treg dysregulation were observed in non-survivors such as limited production of IL-10 in the lungs and higher production of IL-17A in the blood and in the lungs, which were associated with increased PD1 expression. These findings were also associated with lower pulmonary levels of Treg-stimulating factors like TNF and IL-2. Tregs in the blood and lungs are profoundly dysfunctional in non-surviving COVID-19 patients.


Subject(s)
COVID-19 , T-Lymphocytes, Regulatory , Humans , T-Lymphocytes, Regulatory/metabolism , Leukocytes, Mononuclear/metabolism , SARS-CoV-2/metabolism , Lung/metabolism , Phenotype , Forkhead Transcription Factors/metabolism
11.
Vaccine ; 40(42): 6084-6092, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36114129

ABSTRACT

BACKGROUND: The Necator americanus hemoglobinase, aspartic protease-1 (Na-APR-1), facilitates the ability of adult hookworms to parasitize the intestine of their human hosts. A recombinant version of APR-1 protected laboratory animals against hookworm infection by inducing neutralizing antibodies that block the protein's enzymatic activity and thereby impair blood feeding. A catalytically inactive version of the wild-type hemoglobinase (Na-APR-1(M74)) was expressed by infiltrating Nicotiana benthamiana tobacco plants with an Agrobacterium tumefaciens strain engineered to express the vaccine antigen, which was adjuvanted with aluminum hydroxide adjuvant (Alhydrogel). METHODS: An open-label dose-escalation Phase 1 clinical trial was conducted in 40 healthy, hookworm-naïve adult volunteers in the United States. Participants received 30 or 100 µg of recombinant Na-APR-1(M74) with Alhydrogel or with Alhydrogel co-administered with one of two doses (2.5 or 5.0 µg) of an aqueous formulation of Glucopyranosyl Lipid A (GLA-AF). Intramuscular injections of study vaccine were administered on days 0, 56, and 112. RESULTS: Na-APR-1(M74)/Alhydrogel was well-tolerated; the most frequent adverse events were mild or moderate injection site tenderness and pain, and mild or moderate nausea and headache. No serious adverse events or adverse events of special interest related to vaccination were observed. Significantly higher levels of antigen-specific IgG antibodies were induced in those who received 100 µg Na-APR-1(M74) than those who received 30 µg of antigen. Adding GLA-AF to Na-APR-1(M74)/Alhydrogel resulted in higher levels of IgG against Na-APR-1(M74) in both the 30 and 100 µg Na-APR-1(M74) groups in comparison to the non-GLA formulations at the same antigen dose. CONCLUSIONS: Vaccination of hookworm-naïve adults with recombinant Na-APR-1(M74) was well-tolerated, safe, and induced significant IgG responses against the vaccine antigen Na-APR-1(M74). Given these favorable results, clinical trials of this product were initiated in hookworm-endemic areas of Gabon and Brazil.


Subject(s)
Hookworm Infections , Vaccines , Adjuvants, Immunologic , Adult , Aluminum Hydroxide , Ancylostomatoidea , Animals , Antibodies, Neutralizing , Hookworm Infections/prevention & control , Humans , Immunogenicity, Vaccine , Immunoglobulin G , Lipid A , Peptide Hydrolases , Nicotiana/genetics
12.
Front Psychiatry ; 13: 836950, 2022.
Article in English | MEDLINE | ID: mdl-35770059

ABSTRACT

Background: The outbreak of the highly infectious coronavirus disease 2019 (COVID-19) renders a huge physical and psychological risk to the public, especially to the medics. Additionally, self-leadership has proven to improve self-efficacy and mediate tension, such as nervousness and depression. Therefore, a cross-sectional survey was conducted to explore the association of self-leadership with acute stress responses (ASRs) and acute stress disorders (ASDs) in medics during the COVID-19 epidemic. Methods: Self-reported online questionnaires were administered, and 627 participants were finally included. The data were analyzed using the univariate analysis and the logistical regression model to identify whether self-leadership and sociodemographic and epidemic characteristics were associated with mental health, including ASRs and ASDs. Results: Initially, 790 medics responded. Of these, 627 remained after excluding for invalid questionnaires and those with a substantial amount of missing data. Therefore, the participation validity rate was 79.37%. Frontline medical staff (ß = 0.338; p < 0.001), possibility of infection among people around the medic being mild (ß = 0.141; p < 0.001), subjective estimation of epidemic duration being 3-6 months (ß = 0.074; p < 0.05), self-sets (ß = -0.022; p < 0.001), self-punishment (ß = 0.229; p < 0.001), belief hypothesis and evaluation (ß = -0.147; p < 0.05), and successful foresight (ß = 0.105; p < 0.05) were statistically significant with ASRs. Marital status [adjusted odds ratio (AOR) =1.813; 95% CI (1.141, 2.881); p = 0.012], being a frontline worker [AOR = 25.760; 95% CI (14.220, 46.667); p < 0.001], visiting Hubei in the previous 14 days [AOR = 3.656; 95% CI (1.500, 8.911); p = 0.004], self-punishment [AOR = 1.352; 95% CI (1.180, 1.548); p < 0.001], and self-dialogue [AOR = 1.256; 95% CI (11.063, 1.483); p = 0.007] were the risk factors for ASD. Conversely, having frontline medical staff in one's family [AOR = 0.523; 95% CI (0.297, 0.923); p = 0.025], self-sets [AOR = 0.814; 95% CI (0.715, 0.826); p = 0.002], and belief hypothesis and evaluation [AOR = 0.796; 95% CI (0.672, 0.943); p = 0.038] were the protective factors. Conclusion: The special working environment of the COVID-19 epidemic resulted in ASR and ASD. Notably, findings revealed a positive association between ASR symptoms and frontline medical staff, the subjective estimation of epidemic duration, self-punishment, and successful foresight. Nevertheless, marital status, having visited Hubei in the previous 14 days, and self-dialogue were the risk factors accounting for ASD symptoms. Surprisingly, having frontline medical staff in one's family, self-sets, and belief hypothesis and evaluation had potential benefits for ASD symptoms.

13.
Elife ; 112022 05 16.
Article in English | MEDLINE | ID: mdl-35575462

ABSTRACT

Ecological preferences and life history strategies have enormous impacts on the evolution and phenotypic diversity of salamanders, but the yet established reliable ecological indicators from bony skeletons hinder investigations into the paleobiology of early salamanders. Here, we statistically demonstrate by using time-calibrated cladograms and geometric morphometric analysis on 71 specimens in 36 species, that both the shape of the palate and many non-shape covariates particularly associated with vomerine teeth are ecologically informative in early stem- and basal crown-group salamanders. Disparity patterns within the morphospace of the palate in ecological preferences, life history strategies, and taxonomic affiliations were analyzed in detail, and evolutionary rates and ancestral states of the palate were reconstructed. Our results show that the palate is heavily impacted by convergence constrained by feeding mechanisms and also exhibits clear stepwise evolutionary patterns with alternative phenotypic configurations to cope with similar functional demand. Salamanders are diversified ecologically before the Middle Jurassic and achieved all their present ecological preferences in the Early Cretaceous. Our results reveal that the last common ancestor of all salamanders share with other modern amphibians a unified biphasic ecological preference, and metamorphosis is significant in the expansion of ecomorphospace of the palate in early salamanders.


Subject(s)
Metamorphosis, Biological , Urodela , Animals , Biological Evolution , Palate , Phylogeny , Skeleton , Urodela/anatomy & histology
14.
Mol Med ; 28(1): 58, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35596156

ABSTRACT

BACKGROUND: Glabridin (Glab) is a bioactive component of licorice that can ameliorate diabetes, but its role in diabetic nephropathy (DN) has seldom been reported. Herein, we explored the effect and underlying mechanism of Glab on DN. METHODS: The bioactive component-target network of licorice against DN was by a network pharmacology approach. The protective effect of Glab on the kidney was investigated by a high-fat diet with streptozotocin induced-diabetic rat model. High glucose-induced NRK-52E cells were used for in vitro studies. The effects of Glab on ferroptosis and VEGF/Akt/ERK pathways in DN were investigated in vivo and in vitro using qRT-PCR, WB, and IHC experiments. RESULTS: Bioinformatics analysis constructed a network comprising of 10 bioactive components of licorice and 40 targets for DN. 13 matching targets of Glab were mainly involved in the VEGF signaling pathway. Glab treatment ameliorated general states and reduced FBG, HOMA-ß, and HOMA-insulin index of diabetic rats. The renal pathological changes and the impaired renal function (the increased levels of Scr, BUN, UREA, KIM-1, NGAL, and TIMP-1) were also improved by Glab. Moreover, Glab repressed ferroptosis by increasing SOD and GSH activity, and GPX4, SLC7A11, and SLC3A2 expression, and decreasing MDA and iron concentrations, and TFR1 expression, in vivo and in vitro. Mechanically, Glab significantly suppressed VEGF, p-AKT, p-ERK1/2 expression in both diabetic rats and HG-induced NRK-52E cells. CONCLUSIONS: This study revealed protective effects of Glab on the kidney of diabetic rats, which might exert by suppressing ferroptosis and the VEGF/Akt/ERK pathway.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Ferroptosis , Glycyrrhiza , Isoflavones , Phenols , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/pathology , Ferroptosis/drug effects , Glycyrrhiza/metabolism , Isoflavones/pharmacology , Kidney/metabolism , MAP Kinase Signaling System/drug effects , Phenols/pharmacology , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Rats , Vascular Endothelial Growth Factor A/metabolism
15.
J Integr Neurosci ; 21(2): 72, 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35364660

ABSTRACT

Traumatic brain injury (TBI), also known as head injury or brain injury, refers to the head injury caused by mechanical impact. It is necessary to develop effective new therapies for TBI injury. Gastrodin (GAS) is the main bioactive ingredient from the rhizome of Gastrodia elata and has significant therapeutic effect on nervous system diseases. However, the protective effects of GAS on brain tissue and related regulatory mechanism in traumatic brain injury remain elusive. Herein, we explored the role of GAS in traumatic brain injury and its related mechanism. We found Gastrodin reduced brain tissue injury and improved functional recovery of injury nerve in TBI rats, and alleviated inflammation. Gastrodin decreased the level of pyroptosis in brain tissue of TBI rats. Further, we found GAS suppressed NLRP3 inflammasome signaling pathway, and therefore suppressed pyroptosis and exerted neuroprotective effect. GAS could serve as a promising drug for TBI treatment.


Subject(s)
Brain Injuries, Traumatic , Neuroprotective Agents , Animals , Benzyl Alcohols , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Glucosides , Inflammasomes/metabolism , Inflammasomes/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Pyroptosis , Rats , Signal Transduction
16.
Curr Gene Ther ; 22(4): 331-341, 2022.
Article in English | MEDLINE | ID: mdl-35240953

ABSTRACT

BACKGROUND: Exosomes released from cardiomyocytes (CMs) potentially play an important role in angiogenesis through microRNA (miR) delivery. Studies have reported an important role for miR-29a in regulating angiogenesis and pathological myocardial hypertrophy. However, whether CMderived exosomal miR-29a is involved in regulating cardiac microvascular endothelial cell (CMEC) homeostasis during myocardial hypertrophy has not been determined. METHODS: Angiotensin II (Ang II) was used to induce CM hypertrophy, and ultracentrifugation was then used to extract exosomes from a CM-conditioned medium. CMECs were cocultured with a conditioned medium in the presence or absence of exosomes derived from CMs (Nor-exos) or exosomes derived from angiotensin II-induced CMs (Ang II-exos). Moreover, a rescue experiment was performed using CMs or CMECs infected with miR-29a mimics or inhibitors. Tube formation assays, Transwell assays, and 5-ethynyl-20-deoxyuridine (EdU) assays were then performed to determine the changes in CMECs treated with exosomes. The miR-29a expression was measured by qRT-PCR, and Western blotting and flow cytometry assays were performed to evaluate the proliferation of CMECs. RESULTS: The results showed that Ang II-induced exosomal miR-29a inhibited the angiogenic ability, migratory function, and proliferation of CMECs. Subsequently, the downstream target gene of miR- 29a, namely, vascular endothelial growth factor (VEGFA), was detected by qRT-PCR and Western blotting, and the results verified that miR-29a targeted the inhibition of the VEGFA expression to subsequently inhibit the angiogenic ability of CMECs. CONCLUSION: Our results suggest that exosomes derived from Ang II-induced CMs are involved in regulating CMCE proliferation, migration, and angiogenesis by targeting VEGFA through the transfer of miR-29a to CMECs.


Subject(s)
Exosomes , MicroRNAs , Myocytes, Cardiac , Vascular Endothelial Growth Factor A , Angiotensin II/pharmacology , Cell Proliferation/genetics , Culture Media, Conditioned , Exosomes/genetics , Exosomes/metabolism , Humans , Hypertrophy/metabolism , Hypertrophy/pathology , MicroRNAs/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Neovascularization, Pathologic , Signal Transduction , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
17.
ACS Appl Mater Interfaces ; 13(39): 46738-46748, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34546702

ABSTRACT

Micropiezoelectric devices have become one of the most competitive candidates for use in self-powered flexible and portable electronic products because of their instant response and mechanic-electric conversion ability. However, achievement of high output performance of micropiezoelectric devices is still a significant and challenging task. In this study, a poly(vinylidene fluoride) (PVDF)/MXene piezoelectric microdevice was fabricated through a microinjection molding process. The synergistic effect of both an intense shear rate (>104 s-1) as well as numerous polar C-F functional groups in MXene flakes promoted the formation of ß-form crystals of PVDF in which the crystallinity of ß-form could reach as high as 59.9%. Moreover, the shear-induced shish-kebab crystal structure with a high orientation degree (fh = ∼0.9) and the stacked MXene acted as the driving force for the dipoles to regularly arrange and produce a self-polarizing effect. Without further polarization, the fabricated piezoelectric microdevices exhibited an open-circuit voltage of 15.2 V and a short-circuit current of 497.3 nA, under optimal conditions (400 mm s-1 and 1 wt % MXene). Impressively, such piezoelectric microdevices can be used for energy storage and for sensing body motion to monitor exercise, and this may have a positive impact on next-generation smart sports equipment.

18.
Vaccine X ; 8: 100100, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34169270

ABSTRACT

INTRODUCTION: As a primary stability-indicating parameter, potency should be strategically evaluated during each phase of vaccine development. Herein, we present potency testing during the early clinical development of the Schistosoma mansoni (Sm) Tetraspanin-2 vaccine formulated on Alhydrogel (Sm-TSP-2/Al). As Sm-TSP-2/Al does not induce sterilizing immunity against its target pathogen (Sm) in animal models, potency is measured by "serological substitution", a method that can add significant variation to the potency metric, especially when used in a compliance (or 'single data point') approach. METHODS: Potency data were analyzed using the compliance approach to determine if two clinical lots of Sm-TSP-2/Al retained potency over 84 and 36 months post-release, respectively. These same data were also analyzed by: i) least-squares regression with a joinpoint regression analysis; ii) control charting of stability slopes; and iii) bootstrap modeling. Nested-regression and bootstrapping were used to compare the potency of the first (#11-69F-003) and second (#1975) clinical lots of Sm-TSP-2/Al. RESULTS: Despite significant variability in the immune assay, both clinical lots of Sm-TSP-2/Al remained potent for 84 and 36 months, respectively, in all four statistical approaches. The first lot of Sm-TSP-2/Al showed a gain in potency starting at 36 months post-release as captured by joinpoint regression. The two clinical lots of Sm-TSP-2/Al had comparable long-term potency. CONCLUSION: While a compliance approach can monitor the long-term stability of Sm-TSP-2/Al, it risks putting this critical stability-indicating parameter out of specification with each time point tested due to statistical multiplicity. Alternative statistical methods, such as joinpoint regression or bootstrapping, do not have this limitation and offer even more precise estimations of potency, with the added benefit of also providing predictive analytics. Nested regression and bootstrapping were shown to be a viable alternatives for lot-to-lot comparisons of the stability of Sm-TSP-2/Al. Instructions for implementing both these potency testing approaches are provided.

19.
Biomacromolecules ; 22(5): 2224-2232, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33909978

ABSTRACT

Cationic glycopolymers with structures similar to those of typical poly(ionic liquid)s (PILs) were synthesized via the quaternization reaction of poly(4-vinyl pyridine) with halogen-functionalized d-mannose and tetraphenylethylene units. Such postpolymerization modification provided PILs with aggregation-induced emission effect as well as specific carbohydrate-protein recognition with lectins such as concanavalin A. The interactions between cationic glycopolymers and different microorganisms, including Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, were used for the killing, imaging, and detection of bacteria. Besides, these sugar-containing PILs showed a relatively low hemolysis rate due to the presence of saccharide units, which may have potential application in the field of biomaterials.


Subject(s)
Ionic Liquids , Staphylococcus aureus , Lectins , Mannose
20.
Materials (Basel) ; 14(2)2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33418972

ABSTRACT

Lithium cobalt oxide (LiCoO2), which has been successfully applied in commercial lithium-ion batteries for portable devices, possesses a theoretical specific capacity of 274 mAh g-1. However, its actual capacity is only half of the theoretical specific capacity, because the charging voltage is restricted below 4.2 V. If a higher charging voltage is applied, an irreversible phase transition of LiCoO2 during delithiation would occur, resulting in severe capacity fading. Therefore, it is essential to investigate the electrochemically driven phase transition of LiCoO2 cathode material to approach its theoretical capacity. In this work, it was observed that LiCoO2 partially degraded to Co3O4 after 150 charging-discharging cycles. From the perspective of crystallography, the conventional cell of LiCoO2 was rebuilt to an orthonormal coordinate, and the transition path from layered LiCoO2 to cubic Co3O4 proposed. The theoretical analysis indicated that the electrochemically driven phase transition from LiCoO2 to Co3O4 underwent several stages. Based on this, an experimental verification was made by doping LiCoO2 with Al, In, Mg, and Zr, respectively. The doped samples theoretically predicted behavior. The findings in this study provide insights into the electrochemically driven phase transition in LiCoO2, and the phase transition can be eliminated to improve the capacity of LiCoO2 to its theoretical value.

SELECTION OF CITATIONS
SEARCH DETAIL
...